
ORIGINAL RESEARCH

Purpose: To evaluate the use of artificial intelligence (AI) to shorten digital breast tomosynthesis (DBT) reading time while maintain-
ing or improving accuracy.

Materials and Methods: A deep learning AI system was developed to identify suspicious soft-tissue and calcified lesions in DBT images. 
A reader study compared the performance of 24 radiologists (13 of whom were breast subspecialists) reading 260 DBT examinations 
(including 65 cancer cases) both with and without AI. Readings occurred in two sessions separated by at least 4 weeks. Area under the 
receiver operating characteristic curve (AUC), reading time, sensitivity, specificity, and recall rate were evaluated with statistical meth-
ods for multireader, multicase studies.

Results: Radiologist performance for the detection of malignant lesions, measured by mean AUC, increased 0.057 with the use of 
AI (95% confidence interval [CI]: 0.028, 0.087; P , .01), from 0.795 without AI to 0.852 with AI. Reading time decreased 52.7% 
(95% CI: 41.8%, 61.5%; P , .01), from 64.1 seconds without to 30.4 seconds with AI. Sensitivity increased from 77.0% without AI 
to 85.0% with AI (8.0%; 95% CI: 2.6%, 13.4%; P , .01), specificity increased from 62.7% without to 69.6% with AI (6.9%; 95% 
CI: 3.0%, 10.8%; noninferiority P , .01), and recall rate for noncancers decreased from 38.0% without to 30.9% with AI (7.2%; 
95% CI: 3.1%, 11.2%; noninferiority P , .01).

Conclusion: The concurrent use of an accurate DBT AI system was found to improve cancer detection efficacy in a reader study that 
demonstrated increases in AUC, sensitivity, and specificity and a reduction in recall rate and reading time.

© RSNA, 2019

Screening with digital breast tomosynthesis (DBT) has 
been shown to improve cancer detection (1–4) and re-

duce false-positive recalls (2–7) compared with screening 
with digital mammography (DM) alone. Whether DBT 
is combined with DM or with reconstructed synthetic 
mammography (SM) images to reduce x-ray dose, the 
time to interpret a DBT examination is almost twice that 
of interpreting a DM-alone study (1,8,9). The increased 
reading time is due to the added time for the radiologist 
to “scroll” through the in-focus planes or “images” of the 
reconstructed DBT stack, with the number of DBT im-
ages being proportional to the thickness of the breast in 
compression. The ability of the radiologist to assess the 
DBT reconstructed images in a quasi–three-dimensional 
(3D) format reduces the impact of confounding or super-
imposed breast tissue, which may “mask” or obscure le-
sions in two-dimensional (2D) planar mammography. The 
DBT reconstructed dataset also adds information on 3D 
localization of lesions within the breast.

As DBT increasingly becomes the standard of care for 
mammographic imaging, there is a need for algorithms to 
optimize reading efficiency while maintaining or improv-
ing the accuracy achieved with DBT compared with that 

achieved with DM-alone imaging. Applications that “flag” 
and “bookmark” lesion location in the reconstructed DBT 
image stack could help with detection and localization of 
clinically significant breast lesions while also decreasing 
reading time.

In the United States, computer-aided detection (CAD) 
is used in approximately 83% of all screening DM (10). 
While some studies have shown that when a single reader 
interprets DM with CAD the accuracy for cancer detection 
is often increased to a level similar to that of double read-
ing (11–13), another large study evaluating the performance 
of radiologists both with and without CAD from 43 facili-
ties over a 4-year period found that CAD use was associated 
with reduced accuracy, as well as an increase in biopsy rec-
ommendation (14). Additional studies have also shown that 
interpretation times for DM with CAD increase by approxi-
mately 19%, compared with reading DM without CAD 
(15). In contrast, recent advances in CAD algorithms ap-
plied to DBT datasets have resulted in faster reading times, 
with maintenance of DBT reader performance (16–18). 
Newer algorithms based on deep learning artificial intelli-
gence (AI) trained on large DBT datasets have the poten-
tial to further improve reader accuracy while also improving 
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500 female patients across seven U.S. acquisition sites. A 
pool of 474 cases met the inclusion and exclusion criteria 
(Fig 1). The 260 reader study cases were randomly selected 
by a statistician (A.Y.T.) from the case pool to meet pre-
defined targets on the basis of characteristics of a screen-
ing population within each case type (negative, recalled, 
benign, cancer) and breast density distribution across case 
types (Tables 1, 2).

The 260 cases were from women aged 26–85 years (median, 55 
years) imaged between June 2012 and October 2017 and included 
65 cases with biopsy-proven malignancies (Tables 1, 2). Cancer 
cases included 64 cases with one malignant lesion and one case 
with two malignant lesions (invasive ductal carcinoma with ductal 
carcinoma in situ in the left breast and invasive ductal carcinoma 
in the right breast). The 66 malignant lesions included 14 ductal 
carcinomas in situ and 52 invasive carcinomas. Invasive lesions 
were predominantly invasive ductal carcinomas (46 of 52 lesions, 
88%), along with five invasive lobular carcinomas only (10%) and 
one invasive papillary carcinoma with ductal carcinoma in situ 
(2%). The 46 invasive ductal carcinoma lesions included 24 in-
vasive ductal carcinomas only, 17 invasive ductal carcinomas with 
ductal carcinoma in situ, four invasive ductal and lobular carcino-
mas, and one invasive ductal and lobular carcinoma with ductal 
carcinoma in situ. Maximum lesion size within each cancer case 
ranged from 0.1 to 6.0 cm (median, 1.4 cm). Although invasive 
carcinomas larger than 2.5 cm were excluded, ductal carcinomas 
in situ were included regardless of size. Maximum lesion size in 
cancer cases with soft-tissue lesions ranged from 0.1 to 4 cm (me-
dian, 0.9 cm), and maximum lesion size in cancer cases with calci-
fications only ranged from 0.3 to 6 cm (median, 1.4 cm).

AI System
An AI system (PowerLook Tomo Detection 2.0; iCAD, 
Nashua, NH) based on deep convolutional neural networks 
processed DBT images in all 260 study cases to detect soft-
tissue and calcific lesions. The system was trained offline in a 
data-driven manner by using an expertly annotated tomosyn-
thesis image dataset collected independently, meaning that 
none of the study cases were used to develop or train the 
algorithm. Unlike conventional CAD systems, the AI system 
acquired knowledge necessary for lesion detection directly 
from the provided training data and did not rely on explicit 
encoding or replication of human expert decision processes. 
An operating point controlling the trade-off between the de-
tection sensitivity and specificity of the algorithm was chosen 
in favor of higher sensitivity. The development and configu-
ration of the algorithm were completed prior to the study. 
A workstation (WorkstationOne; Three Palm Software, Car-
mel, Calif ) displayed outlines of lesions detected by AI with 
faint outlines on every image and a bold outline on the image 
in which AI detected the lesion. The outlines could be tog-
gled on and off. Calibrated scores (0–100) at the lesion and 
case levels were also provided to indicate the algorithm’s con-
fidence that a finding or case showed malignancy. The scores 
were calibrated with the training dataset, which was weighted 
to have 50% cancers and 50% noncancers such that, for ex-
ample, a 70% lesion score meant that, of all the detections in 

reading efficiency. The purpose of this study was to evaluate the 
concurrent use of a DBT AI system to reduce reading time and 
maintain or improve area under the receiver operating characteris-
tic (ROC) curve (AUC), sensitivity, and specificity.

Materials and Methods
Case data were retrospectively collected in compliance with 
the Health Insurance Portability and Accountability Act, 
with institutional review board approval and waiver of in-
formed consent. The study was financially supported by 
iCAD (Nashua, NH) and was performed by Intrinsic Im-
aging (Bolton, Mass). The truthing radiologist (J.E.B.) was 
Intrinsic Imaging’s medical director and had control of the 
study data and information submitted for publication that 
might present a conflict of interest for authors who are em-
ployees of iCAD (S.P., S.V.F., J.G., and J.W.H.) or consul-
tants for iCAD (E.F.C. and A.Y.T.).

Study Design
A multireader, multicase study of a DBT AI system was per-
formed with 24 readers and 260 cases, including 65 cancer 
cases with 66 malignant lesions and 65 biopsy-proven benign 
cases. Readers reviewed 130 cases without AI and another 
130 cases with AI during one session and complementary 
cases during a second session such that each case was read 
by each reader both with and without AI. Sessions were sep-
arated by a memory washout period of at least 4 weeks to 
minimize recall bias (19).

Cases
Screening and diagnostic DBT examinations with 2D DM 
or SM (Selenia Dimensions; Hologic, Marlborough, Mass) 
were collected from blocks of sequential series, including 

Abbreviations
AI = artificial intelligence, AUC = area under the ROC curve, 
BI-RADS = Breast Imaging Reporting and Data System, CAD = 
computer-aided detection, CI = confidence interval, DBT = digital 
breast tomosynthesis, DM = digital mammography, ROC = receiver 
operating characteristic, SM = synthetic mammography, 2D = two-
dimensional 

Summary
Reading times were significantly reduced, and sensitivity, specificity, 
and recall rate improved in a nonclinical reader study when an artifi-
cial intelligence system was utilized concurrently with image interpre-
tation for digital breast tomosynthesis.

Key Points
 n The results of this reader study suggest that the combination of a 

highly accurate artificial intelligence (AI) system and concurrent 
rather than second-reader workflow may reduce reading times.

 n The study also suggests the potential to increase sensitivity, speci-
ficity, and recall rates in comparison with interpretation without 
an AI system.

 n The results of this study suggest that both improved efficiency and 
accuracy could be achieved in clinical practice by using an effective 
AI system.

https://pubs.rsna.org/journal/ai
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Figure 1: Case selection flowchart. Cases with imaging evidence of prior breast surgery (n = 8) were 
excluded because readers were not provided history or prior examinations. The following cancer cases were 
also excluded: Cases with primary breast cancers that were not visible mammographically (n = 1 detected 
with US; n = 1 detected because palpable), cases with biopsy results of ductal carcinoma in situ (DCIS) that 
were not surgically confirmed (n = 1), and invasive carcinomas larger than 2.5 cm (n = 2). Lesion size was 
based on surgical pathologic findings when available or longest linear dimension on study images. A breast 
subspecialist truthing radiologist (J.E.B) who was not a study reader annotated the location and extent of ma-
lignant lesions on two-dimensional (2D) images and digital breast tomosynthesis (DBT) images. The reference 
standard was biopsy proof for all cancer cases and excision of any benign histopathologic findings or concor-
dant biopsy of fibroadenoma or fibrocystic changes for benign cases. Benign cases in which the patient had 
undergone aspiration and those with discordant biopsy or concordant biopsy of histopathologic findings other 
than fibroadenoma or fibrocystic changes also required normal imaging at least 1 year (320 days) after the 
study DBT examination (n = 11 excluded for lack of 1-year follow-up). Normal 1-year follow-up imaging find-
ings was the reference standard for recalled (Breast Imaging Reporting and Data System [BI-RADS] category 
0) and negative (BI-RADS category 1 or 2) cases. Two negative cases were excluded because of poor image 
quality. Cases with implants that had implant-displaced views were included (n = 4 in 474 case pool, n = 3 in 
260 reader study cases).

500 DBT examinations in the prior 2 years; none practiced 
at acquisition sites. Readers had been in practice from 1 year 
to 34 years (median, 8 years); 13 (54%) were breast subspe-
cialists who had devoted 75% or more of their time to breast 
imaging in the prior 3 years, and 11 (46%) were general ra-
diologists who had devoted less than 75% of their time to 
breast imaging. Readers were trained with 30 cases separate 
from the 260 study cases. Readers were trained to review 
standard-view (left and right craniocaudal and mediolateral 
oblique) 2D images followed by standard-view DBT images 

the weighted dataset that were similar to the detected lesion 
on the basis of the algorithm classifier score, 70% were ma-
lignant and 30% were benign. The AI system did not process 
2D images. The study cases were processed offsite by the AI 
system. The output of the AI system and the case images were 
loaded onto workstations for use during the reader study.

Readers
All 24 radiologists were Mammography Quality Standards 
Act qualified to read DBT studies and had read more than 

https://pubs.rsna.org/journal/ai
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this prespecified, fixed sequence to protect the study type 
I error rate (a = .05) from inflation associated with mul-
tiple comparisons; hypothesis tests for secondary end points 
were performed only once the co-primary end points were 
met. When testing noninferiority, we placed limits on the 
amount by which performance with AI could be inferior to 
performance without AI (noninferiority margins) of 0.05. 
Nonparametric AUCs were based on case-level level of sus-
picion scores requiring correct localization of malignant le-

with concurrent use of AI out-
lines and scores to assist in the 
identification of soft-tissue and 
calcific lesions.

Readings with and Those 
without AI
Cases were evaluated indepen-
dently, with an individually 
randomized reading order, at 
Intrinsic Imaging’s reading fa-
cility from January through 
March 2018. Readers were told 
that the sample of cases was en-
riched but were blinded to spe-
cific proportions. Readers were 
also blinded to types of cases 
and were not provided patient 
history, prior images, or acqui-
sition site results. When detect-
ing suspicious lesions, readers 
provided location, mammo-
graphic appearance (soft tis-
sue, calcifications, or mixed), 
“forced” Breast Imaging Re-
porting and Data System (BI-
RADS) (20) assessment cat-
egory (1, 2, 3, 4A, 4B, 4C, or 
5), and level of suspicion on a 
0–100-point scale (with a score 
of 100 indicating the highest 
suspicion of malignancy). If no 
lesions were detected, readers 
provided case-level BI-RADS 
category and level of suspi-
cion. Readers knew they were 
being timed but were blinded 
to the measurement from first 
viewing case images until de-
termining whether the case had 
suspicious lesions. Assessments 
and reading time were missing 
for seven readings (three with 
AI, four without AI) because 
of reader and software errors; 
thus, 12 473 of 12 480 planned 
readings had complete data.

Statistical Analysis
Sample size was calculated (21,22) from a previous pilot 
reader study with the DBT AI system. Co-primary end 
points were noninferiority of case-level AUC and superi-
ority (reduction) of reading time with versus without AI. 
Secondary end points were superiority of case-level AUC, 
noninferiority and superiority of case-level and lesion-level 
sensitivity, and noninferiority of specificity and recall rate 
in noncancers. End points were evaluated hierarchically in 

Table 1: Selection of 260 Study Cases from 474-Case Pool to Match a Screening 
Population within each of Negative, Recalled, Benign, and Cancer Cases

Case and Lesion Mammographic Characteristics
Case Pool  
(n = 474)

Randomly  
Selected Cases  
(n = 260)

Breast density in all cases (n = 474)
 Almost entirely fatty or scattered areas of fibroglandular 

density
219 (46.2) 133 (51.2)

 Heterogeneously dense or extremely dense 255 (53.8) 127 (48.8)
Negative cases: BI-RADS category 1 or 2; not suspicious, no 

recall, no biopsy
212 (44.7) 109 (41.9)

 BI-RADS category 1 173/212 (81.6) 89/109 (81.7)
 BI-RADS category 2 39/212 (18.4) 20/109 (18.3)
Recalled cases: BI-RADS category 0; suspicious, recall, but 

no biopsy warranted
37 (7.8) 21 (8.1)

 Soft-tissue densities (with or without calcifications) 26/37 (70.3) 16/21 (76.2)
 Soft-tissue densities and calcifications 1/26 (3.8) 1/16 (6.3)
 Calcifications only 11/37 (29.7) 5/21 (23.8)
Benign cases: BI-RADS category 3, 4, or 5; suspicious, 

recall, biopsy-proven benign
103 (21.7) 65 (25.0)

 Soft-tissue densities (with or without calcifications) 63/103 (61.2) 46/65 (70.8)
 Soft-tissue densities and calcifications 6/63 (9.5) 6/46 (13.0)
 Calcifications only 40/103 (38.8) 19/65 (29.2)
Cancer cases: BI-RADS category 3, 4, or 5; suspicious, 

recall, biopsy-proven cancer
122 (25.7) 65 (25.0)

 Soft-tissue densities (with or without calcifications) 100/122 (82.0) 50/65 (76.9)
 Soft-tissue densities and calcifications 12/100 (12.0) 7/50 (14.0)
 Calcifications only 22/122 (18.0) 15/65 (23.1)

Note.—Data are numbers of cases, with percentages in parentheses. BI-RADS = Breast Imaging 
Reporting and Data System.

Table 2: Histopathologic Findings in Cancer Cases

Histopathologic Findings of Malignant Lesions in 
Cancer Cases

Pool of Cancer 
Cases (n = 122)

Randomly Selected 
Cancer Cases  
(n = 65)

Invasive cancer (all  2.5 cm in size) with or without 
 ductal carcinoma in situ

99/122 (81.1) 51/65 (78.5)

  1.4 cm in size 49/99 (49.5) 26/51 (51.0)
 Invasive lobular cancer 10/99 (10.1) 5/51 (9.8)
Ductal carcinoma in situ only (no size restriction) 23/122 (18.9) 14/65 (21.5)

Note.—Data are numbers of cases, with percentages in parentheses.

https://pubs.rsna.org/journal/ai
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Co-Primary End Point: Superior Reading Time
Reading time improved with AI, as shown by the difference 
of reading time in seconds without AI minus that with AI 
and the normalizing-transformed percentage difference: nat-
ural log of (percentage difference + 100) minus natural log of 
100 (Table 4). For difference in seconds, the average decrease 
in reading time with AI was 34.7 seconds (95% CI: 23.4, 
46.0 seconds; P , .01). For percentage difference, the aver-

sions. A normalizing transformation (23) was used to assess 
reading times, which were not normally distributed. Sen-
sitivity and specificity were based on BI-RADS categories 
provided by readers, with category 3 or higher considered to 
be positive, while also requiring correct localization. Recall 
rate was based on whether the reader detected a suspicious 
lesion. End points were assessed (using P ,.05 to indicate 
significance) with multireader, multicase analysis methods 
(24–26) programmed by a statistician (A.Y.T.) and allowing 
for missing reading data (27) and accounting for correlation 
between lesions in the same case for lesion-level sensitivity 
(28,29). The stand-alone performance of AI was evaluated 
through case-level sensitivity and specificity at the operating 
point with Wilson (30) 95% confidence intervals (CIs). A 
nonparametric ROC curve plotted the case-level sensitivity 
of AI and specificity based on case-level AI scores requiring 
correct lesion localization.

Results

Co-Primary End Point: Noninferior AUC
The average empirical nonparametric case-level ROC across 
readers with AI was higher than that without AI (Fig 2). 
Each reader’s nonparametric trapezoidal AUC without AI, 
that with AI, and the difference between them are shown in 
Table 3. Twenty-two (92%) of 24 readers had higher AUCs 
with AI than without AI. The average AUC across readers 
without AI was 0.795, and the average AUC across read-
ers with AI was 0.852. The average difference in AUC was 
0.057 (two-sided 95% CI: 0.028, 0.087). The study suc-
cessfully demonstrated noninferior AUC for noninferiority 
margin = 0.05 (P , .01).

Figure 2: Average of empirical receiver operating charac-
teristic plots with and without artificial intelligence (AI). True-
positive fraction = case-level sensitivity, false-positive fraction = 
1 − specificity.

Table 3: Estimated AUCs without and with AI

Reader  
Number

AUC without 
AI

AUC with  
AI

AUC  
Difference

Reader 1* 0.631 (0.035) 0.746 (0.035) 0.115 (0.045)
Reader 2 0.812 (0.033) 0.868 (0.028) 0.056 (0.028)
Reader 3* 0.790 (0.035) 0.852 (0.028) 0.062 (0.033)
Reader 4 0.844 (0.033) 0.868 (0.029) 0.024 (0.028)
Reader 5 0.747 (0.037) 0.825 (0.031) 0.078 (0.026)
Reader 6 0.824 (0.032) 0.894 (0.023) 0.070 (0.030)
Reader 7 0.850 (0.032) 0.853 (0.029) 0.003 (0.023)
Reader 8 0.905 (0.023) 0.891 (0.026) −0.014 (0.025)
Reader 9 0.885 (0.026) 0.882 (0.026) −0.004 (0.024)
Reader 10* 0.681 (0.035) 0.831 (0.029) 0.150 (0.037)
Reader 11 0.870 (0.028) 0.874 (0.028) 0.003 (0.023)
Reader 12* 0.784 (0.039) 0.849 (0.033) 0.066 (0.039)
Reader 13* 0.707 (0.038) 0.806 (0.032) 0.099 (0.032)
Reader 14 0.786 (0.038) 0.814 (0.033) 0.028 (0.040)
Reader 15* 0.828 (0.032) 0.878 (0.026) 0.049 (0.025)
Reader 16* 0.801 (0.033) 0.886 (0.025) 0.085 (0.034)
Reader 17 0.828 (0.032) 0.842 (0.030) 0.014 (0.028)
Reader 18 0.727 (0.037) 0.833 (0.031) 0.106 (0.036)
Reader 19* 0.820 (0.034) 0.878 (0.028) 0.058 (0.025)
Reader 20* 0.801 (0.035) 0.820 (0.034) 0.020 (0.033)
Reader 21 0.802 (0.043) 0.888 (0.027) 0.086 (0.043)
Reader 22 0.860 (0.030) 0.882 (0.027) 0.022 (0.027)
Reader 23* 0.756 (0.042) 0.836 (0.033) 0.079 (0.038)
Reader 24* 0.740 (0.041) 0.854 (0.030) 0.114 (0.034)
Average 0.795 (0.026) 0.852 (0.023) 0.057 (0.015)†

95% CI for 
average‡

0.743, 0.847 0.807, 0.897 0.028, 0.087

Note.—Data in parentheses are standard errors of the estimate. 
There were 65 cancer cases except for reader 4 (n = 64) and 
reader 17 (n = 64) without artificial intelligence (AI) and reader 
1 (n = 64) with AI. There were 195 noncancer cases except for 
reader 2 (n = 194) and reader 7 (n = 194) without AI and reader 
10 (n = 193) with AI. AUC = area under the receiver operating 
characteristic, CI = confidence interval.
* General radiologists who had devoted less than 75% of their 
time to breast imaging in the prior 3 years.
† Test of noninferiority for noninferiority margin = 0.05: T* (T 
statistic adjusted for correlation) = 7.17, P , .01. Test for differ-
ence: T* = 3.82, P , .01.
‡ CIs were obtained by using the Student t distribution, with 
Hillis (23) degrees of freedom limited to one less than the num-
ber of contributing observations: 340.4 for without AI, 2543.3 
for with AI, and (1, 186.7) for the difference.

https://pubs.rsna.org/journal/ai
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age on the untransformed scale 
was likely to underestimate the 
center of the distribution of im-
provement because that center 
was more heavily influenced by 
reading times that are longer 
without AI. Using the transfor-
mation, we obtained an aver-
age of −0.75 (95% CI: −0.95, 
−0.54; P , .01). Transforming 
back to the percentage differ-
ence scale provided an average 
improvement of 52.7% with AI 
(95% CI: 41.8%, 61.5%). Av-
erage reading time, if calculated 
on the untransformed scale, is 
likely to overestimate the center 
of the distribution because that 
center is influenced by longer 
reading times. Therefore, aver-
age reading times and associ-
ated 95% CIs were obtained by 
using a natural log transforma-
tion. Transforming back to sec-
onds gives an average reading 
time without AI of 64.1 sec-
onds (95% CI: 53.0, 77.5) and 
a reading time with AI of 30.4 
seconds (95% CI: 24.8, 37.2). 
Figure 3 shows average reading 
times for each reader without 
and those with AI.

Secondary End Point: 
Superior AUC
The superior case-level average 
AUC with AI, 0.852, versus that 
without AI, 0.795 (Table 3) was 
statistically significant (P , .01 
for test of difference in the hy-
pothesis-testing sequence).

Secondary End Point: 
Case-level Sensitivity
Radiologists had superior sen-
sitivity at the case level with AI 
(Table 5). Average sensitivity 
increased by 0.080 (95% CI: 
0.026, 0.134), from 0.770 with-
out AI to 0.850 with AI (in the hypothesis-testing sequence, P 
, .01 for noninferiority margin = 0.05, and P , .01 for test of 
difference). Eighteen (75%) of 24 readers had higher case-level 
sensitivity with AI, three (13%) readers had lower sensitivity, 
and sensitivity for three (13%) readers did not change. Average 
sensitivity increased by 0.120 with AI in the subgroup of 15 
cancer cases with only calcifications (standard error of the esti-
mate, 0.040) and by 0.068 in the subgroup of 50 cancer cases 

with at least one soft-tissue or mixed lesion (standard error of 
the estimate, 0.031). Figures 4 and 5 provide case examples 
where 10–12 more radiologists detected small invasive cancers 
with AI while reducing reading time.

Secondary End Point: Lesion-level Sensitivity
At the lesion level, radiologists also had superior sensitivity 
with AI. Average per-lesion sensitivity across readers increased 

Table 4: Analysis of Differences in Reading Times without AI minus Those with AI

Reader Number
Reading Time  
Difference (sec)

Percentage Difference 
in Reading Time

log(Percentage Differ-
ence in Reading Time 
+ 100) − log(100)

Reader 1* −2.5 (1.6) 2.92 (5.67) −0.38 (0.06)
Reader 2 −13.6 (2.4) −5.51 (5.03) −0.30 (0.04)
Reader 3* −11.1 (1.4) −10.49 (3.07) −0.24 (0.03)
Reader 4 −26.0 (2.8) −23.01 (5.05) −0.76 (0.07)
Reader 5 −16.1 (3.1) −2.99 (5.46) −0.46 (0.06)
Reader 6 −34.6 (2.2) −34.84 (2.52) −0.61 (0.04)
Reader 7 −58.3 (3.2) −44.80 (3.97) −0.93 (0.05)
Reader 8 −65.7 (3.6) −52.47 (2.93) −1.11 (0.05)
Reader 9 −90.4 (2.8) −71.67 (1.43) −1.58 (0.05)
Reader 10* −13.6 (0.9) −36.57 (3.59) −0.67 (0.04)
Reader 11 −18.8 (3.1) −12.26 (4.22) −0.46 (0.06)
Reader 12* −84.3 (3.8) −55.26 (7.02) −1.53 (0.07)
Reader 13* −8.0 (1.9) −9.96 (4.28) −0.35 (0.04)
Reader 14 −58.6 (2.9) −74.61 (2.29) −1.94 (0.06)
Reader 15* −45.1 (4.8) −18.26 (3.97) −0.51 (0.05)
Reader 16* −26.4 (1.0) −45.59 (1.52) −0.69 (0.02)
Reader 17 −48.6 (1.7) −64.93 (1.38) −1.21 (0.03)
Reader 18 1.4 (1.4) 24.63 (6.40) −0.04 (0.05)
Reader 19* −3.8 (3.6) 3.19 (4.12) −0.14 (0.04)
Reader 20* −52.3 (3.4) −46.14 (3.27) −1.07 (0.06)
Reader 21 −21.5 (1.6) −27.01 (3.95) −0.58 (0.05)
Reader 22 −26.8 (2.2) −34.32 (3.08) −0.67 (0.05)
Reader 23* −72.5 (4.0) −52.80 (3.29) −1.13 (0.05)
Reader 24* −35.4 (2.3) −35.32 (2.10) −0.58 (0.03)
Average −34.7 (5.5)† … −0.75 (0.10)†

95% CI for average −46.0, −23.4‡ … −0.95, −0.54‡

Back-transformed average … −52.7% …
95% CI for back-trans-

formed average
… −61.5%, −41.8% …

Note.—Data in parentheses are standard errors of the estimate. There were 260 paired reading 
times for 65 cancer cases and 195 noncancer cases except for reader 1 (n = 259), reader 2 (n = 259), 
reader 4 (n = 259), reader 7 (n = 259), reader 10 (n = 258), and reader 17 (n = 259). AI = artificial 
intelligence, CI = confidence interval.
* General radiologists who had devoted less than 75% of their time to breast imaging in the prior 3 
years.
† P value for test of null hypothesis: no difference versus alternate hypothesis. P , .01 for difference 
(seconds) and P , .01 for percentage difference using natural log of (percentage difference + 100) 
minus natural log of 100 to normalize.
‡ CIs were obtained by using the Student t distribution, with Hillis (23) degrees of freedom 24.1 
for difference (normalizing transformation not required) and 25.3 for percentage difference using 
natural log of (percentage difference + 100) − natural log of 100 to normalize.
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by 0.084 (95% CI: 0.029, 0.139), from 0.769 without AI to 
0.853 with AI (in the hypothesis-testing sequence, P , .01 
for noninferiority margin = 0.05, and P , .01 for test of dif-
ference). Nineteen (79%) of 24 readers had higher per-lesion 
sensitivity with AI, three (13%) readers had lower sensitivity, 
and sensitivity for two (8%) readers did not change.

Secondary End Point: Specificity
Radiologists had noninferior specificity with AI (Table 5). 
Twenty-one (88%) of the 24 readers had higher specificity with 
AI than without AI, and three (13%) readers had lower speci-
ficity. These averaged out to an increase of 0.069 in specificity 
(95% CI: 0.030, 0.108), from 0.627 without AI to 0.696 with 
AI (in the hierarchical, prespecified, fixed hypothesis-testing 
sequence, P , .01 for noninferiority margin = 0.05). Superior-
ity of specificity was not included in the prespecified testing se-
quence, so a hypothesis test for superiority was not performed.

Secondary End Point: Recall Rate in Noncancers
Radiologists had a noninferior recall rate in noncancer cases 
with AI. In noncancer cases, lower recall rates are better than 
higher recall rates. Average recall rate in noncancer cases was 
0.380 without AI and 0.309 with AI, with an average reduc-
tion of 0.072 (95% CI: 0.031, 0.112) (in the hierarchical, 
prespecified, fixed hypothesis-testing sequence, P , .01 for 
noninferiority margin = 0.05). Superiority of recall rate in non-
cancers was not included in the prespecified testing sequence, 
so a hypothesis test for superiority was not performed.

AI Stand-Alone Performance and Summary of 
Reader Study Results
Average case-level sensitivity, specificity, and reading time are 
summarized for each reader without and with AI, along with 
AI’s stand-alone performance (no human reader), in Figure 6. 
The AI operating point case-level sensitivity was 91% (59 of 
65; 95% CI: 81%, 96%), and its specificity was 41% (79 of 

195; 95% CI: 34%, 48%). Sensitivity in cases with only calci-
fications was 100% (15 of 15; 95% CI: 80%, 100%) and was 
88% (44 of 50; 95% CI: 76%, 94%) in cases with soft-tissue 
densities with or without calcifications.

Discussion
In our enriched multireader, multicase study, we demonstrated 
that when AI is concurrently incorporated into the interpre-
tation of DBT studies, reading times can be significantly re-
duced while accuracy is improved. The AI system, which is 
based on a deep convolutional neural network algorithm that 
processes individual reconstructed DBT images, presents the 
readers with outlines and locations of soft-tissue and calcific 
breast lesions. In addition, the AI system assigns a “certainty 
of finding” score for each lesion and for the entire case. When 
DBT readers are concurrently presented with this information 
during interpretation, reading times, on average, are cut in 
half. This significant reduction in reading time mitigates the 
approximately twofold increase in reading times reported for 
DBT compared with reading DM-alone studies (1,8,9). This 
improvement in reading time thus has the potential to signifi-
cantly improve the efficiency of DBT workflow in busy breast 
imaging clinics.

Reading times varied by reader; the average time for DBT 
reading without AI was 64.1 seconds, compared with 30.4 sec-
onds with AI. Note that in our study, when readers interpreted 
DBT with AI, the AI lesion and case-based data appeared con-
currently, at the opening of the DBT study. This reading scheme 
is different from the typical presentation of CAD results at the 
end of reading, which adds to interpretation time (15). The 
high stand-alone performance of this AI system (91% sensitiv-
ity, 41% specificity) and the availability of confidence scores for 
each lesion along with concurrent use may have been important 
contributing factors that resulted in better outcomes than those 
with conventional CAD systems (14). The concurrent use of AI 
from the start of DBT reading will be a change and will possibly 

Figure 3: Bar graph shows average reading times for each reader without and with artificial intelligence (AI).
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require a learning curve for most breast imagers. However, be-
cause concurrent use of AI yields significant improvements in 
both efficiency and accuracy, such a reading protocol with AI 
should be considered by all breast imagers.

AUC is an overall measure of accuracy that combines case-
level sensitivity and specificity into a single metric. Although 
improvements in AUC have been difficult to show with the 
use of AI or CAD with DBT (16–18), our study showed a 
statistically significant 0.057 average improvement in AUC, 
even while significantly cutting reading time approximately in 
half on average. In terms of case-level sensitivity, specificity, 
and reading time for each reader, all readers benefitted from 
using AI: Most of the readers (14 of 24) had improvements in 

sensitivity, specificity, and reading time; the three readers who 
had reductions in sensitivity and the three readers who had no 
change in sensitivity all had increases in specificity and faster 
reading times; the three readers who had reductions in speci-
ficity had increases in sensitivity and faster reading times; and 
the one reader who had a slower reading time had increases in 
sensitivity and specificity. Of note is the overall decrease in the 
variability of the group of readers’ performances and reading 
times when reading with AI, demonstrated by the general shift 
of readers’ paired (sensitivity, specificity) locations to the upper 
left corner of the ROC plane (increases in AUC) and the over-
all decreases in the reading times and variability of the paired 
(sensitivity, specificity) locations.

Table 5: Estimated Case-Level Sensitivity and Specificity without and Those with AI

Reader  
Number

Sensitivity without 
AI Sensitivity with AI

Sensitivity  
Difference

Specificity without 
AI Specificity with AI

Specificity  
Difference

Reader 1* 0.385 (0.060) 0.625 (0.061) 0.240 (0.078) 0.846 (0.026) 0.821 (0.027) −0.026 (0.034)
Reader 2 0.754 (0.053) 0.831 (0.047) 0.077 (0.050) 0.758 (0.031) 0.821 (0.027) 0.063 (0.028)
Reader 3* 0.769 (0.052) 0.815 (0.048) 0.046 (0.063) 0.667 (0.034) 0.723 (0.032) 0.056 (0.032)
Reader 4 0.859 (0.043) 0.877 (0.041) 0.018 (0.041) 0.518 (0.036) 0.641 (0.034) 0.123 (0.034)
Reader 5 0.677 (0.058) 0.815 (0.048) 0.138 (0.043) 0.718 (0.032) 0.733 (0.032) 0.015 (0.038)
Reader 6 0.846 (0.045) 0.954 (0.026) 0.108 (0.049) 0.595 (0.035) 0.626 (0.035) 0.031 (0.031)
Reader 7 0.831 (0.047) 0.846 (0.045) 0.015 (0.041) 0.655 (0.034) 0.754 (0.031) 0.099 (0.030)
Reader 8 0.923 (0.033) 0.877 (0.041) −0.046 (0.046) 0.728 (0.032) 0.790 (0.029) 0.062 (0.025)
Reader 9 0.862 (0.043) 0.862 (0.043) 0.000 (0.044) 0.805 (0.028) 0.815 (0.028) 0.010 (0.027)
Reader 10* 0.523 (0.062) 0.846 (0.045) 0.323 (0.066) 0.821 (0.027) 0.736 (0.032) −0.085 (0.036)
Reader 11 0.938 (0.030) 0.892 (0.038) −0.046 (0.040) 0.400 (0.035) 0.631 (0.035) 0.231 (0.039)
Reader 12* 0.877 (0.041) 0.877 (0.041) 0.000 (0.058) 0.221 (0.030) 0.477 (0.036) 0.256 (0.042)
Reader 13* 0.585 (0.061) 0.769 (0.052) 0.185 (0.057) 0.738 (0.031) 0.759 (0.031) 0.021 (0.034)
Reader 14 0.877 (0.041) 0.877 (0.041) 0.000 (0.049) 0.292 (0.033) 0.487 (0.036) 0.195 (0.039)
Reader 15* 0.831 (0.047) 0.908 (0.036) 0.077 (0.040) 0.646 (0.034) 0.682 (0.033) 0.036 (0.030)
Reader 16* 0.723 (0.056) 0.908 (0.036) 0.185 (0.065) 0.790 (0.029) 0.713 (0.032) −0.077 (0.033)
Reader 17 0.781 (0.052) 0.769 (0.052) −0.012 (0.050) 0.774 (0.030) 0.872 (0.024) 0.097 (0.027)
Reader 18 0.585 (0.061) 0.785 (0.051) 0.200 (0.062) 0.785 (0.029) 0.795 (0.029) 0.010 (0.032)
Reader 19* 0.800 (0.050) 0.892 (0.038) 0.092 (0.042) 0.600 (0.035) 0.651 (0.034) 0.051 (0.033)
Reader 20* 0.754 (0.053) 0.800 (0.050) 0.046 (0.051) 0.677 (0.033) 0.738 (0.031) 0.062 (0.036)
Reader 21 0.846 (0.045) 0.908 (0.036) 0.062 (0.053) 0.585 (0.035) 0.662 (0.034) 0.077 (0.033)
Reader 22 0.846 (0.045) 0.877 (0.041) 0.031 (0.049) 0.656 (0.034) 0.733 (0.032) 0.077 (0.032)
Reader 23* 0.892 (0.038) 0.938 (0.030) 0.046 (0.046) 0.256 (0.031) 0.374 (0.035) 0.118 (0.043)
Reader 24* 0.723 (0.056) 0.862 (0.043) 0.138 (0.053) 0.523 (0.036) 0.672 (0.034) 0.149 (0.038)
Average 0.770 (0.039) 0.850 (0.032) 0.080 (0.027)† 0.627 (0.041) 0.696 (0.033) 0.069 (0.019)‡

95% CI for 
average§

0.692, 0.848 0.788, 0.913 0.026, 0.134 0.544, 0.710 0.631, 0.761 0.030, 0.108

Note.—Data in parentheses are standard errors of the estimate. There were 65 cancer cases except for reader 4 (n = 64) and reader 17 (n 
= 64) without artificial intelligence (AI) and reader 1 (n = 64) with AI. There were 195 noncancer cases except for reader 2 (n = 194) and 
reader 7 (n = 194) without AI and reader 10 (n = 193) with AI. CI = confidence interval.
* General radiologists who had devoted less than 75% of their time to breast imaging in the prior 3 years.
† Test of case-level sensitivity noninferiority for noninferiority margin = 0.05: T* (T statistic adjusted for correlation) = 4.76, P , .01. Test 
for case-level sensitivity difference: T* = 2.93, P , .01.
‡ Test of specificity noninferiority for noninferiority margin = 0.05: T* = 6.12, P , .01.
§ CIs were obtained by using the Student t distribution with Hillis (23) degrees of freedom limited to one less than the number of contrib-
uting observations: 92.7 for case-level sensitivity without AI, 600.2 for case-level sensitivity with AI, and (1, 95.5) for case-level sensitivity 
difference; 35.9 for specificity without AI, 77.6 for specificity with AI, and (1, 38.9) for specificity difference.
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At the case level, 75% of 
readers had higher sensitivities 
with AI, and at the lesion level, 
79% had higher sensitivities. Im-
provements in overall sensitiv-
ity were greater for cancer cases 
with calcifications only than for 
those that were soft tissue only 
or mixed soft tissue and calcifica-
tions. This may be related to the 
size of the lesions and the over-
all improved conspicuity of soft-tissue lesions compared with 
calcifications-only lesions at DBT. In addition, some of the 
cases did not have DM images but instead had only synthetic 
2D images combined with DBT (SM/DBT), for which there 
have been reports of lower rates of detection of ductal carci-
nomas in situ (8,31,32). Perhaps AI provides an even larger 
improvement in sensitivity for calcifications-only malignant le-
sions when SM/DBT is performed (without DM); subgroup 

analysis and larger sample sizes are needed to investigate the 
role of AI in SM/DBT.

There were limitations to our study. First, it is well known 
that radiologists may behave differently in reader studies 
than they do in clinical practice, and therefore, some of the 
findings from our enriched reader study may not translate 
to the clinical workplace (33). Although the study included 
13 breast subspecialists and 11 general radiologists, other 

Figure 4: Images in a 74-year-
old woman at screening with 
combination digital mammog-
raphy (DM) and digital breast 
tomosynthesis (DBT). A, DM views 
show small, focal asymmetry that 
is seen only in the right craniocau-
dal (RCC) view. Right DBT views 
show small spiculated mass in 
upper outer quadrant, better seen 
on, B, RCC than, C, right medio-
lateral oblique (RMLO) view. The 
artificial intelligence (AI) case 
score of 38% was displayed at 
the bottom of the DBT views, and 
two AI outlines and lesion scores 
(27 for small spiculated mass; 
23 for false-positive finding) 
were displayed on the RCC DBT 
view. Readers could click on the 
outlines on any DBT image and 
automatically advance to the 
DBT image where the lesion was 
detected by AI. D, E, Zoomed, D, 
RCC, and, E, RMLO DBT views 
show small spiculated mass that 
proved to be an 8-mm invasive 
ductal carcinoma (estrogen 
receptor positive, progesterone re-
ceptor positive, human epidermal 
growth factor receptor 2 nega-
tive, low Ki67 level). Twelve more 
readers detected the malignant 
mass with AI, while reducing 
average reading time across all 
24 readers: Six (25%) of the 24 
readers detected the mass without 
AI (reading time, 77.6 seconds), 
and 18 (75%) readers detected 
it with AI (reading time, 57.0 
seconds).
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limitations to our study may 
have been the number of read-
ers and variability of their ex-
perience. In addition, outcome 
analyses by patient, cancer sub-
types, and detection method 
(ie, cancers detected vs those 
that had prior false-negative 
screening results) are needed 
to fully understand the clinical 
impact of this AI system. These 
limitations and others might be addressed with a larger pro-
spective study.

Finally, any strategy to achieve gains in clinical efficiency must 
not come at the risk of decreasing patient outcomes (here, the ac-
curacy of DBT imaging interpretations). We have shown in our 

reader study that the concurrent use of AI in DBT interpretation 
has the potential to improve both efficiency and accuracy. As ma-
chine learning methods advance with exposure to larger and larger 
datasets and the adoption of AI expands, we expect the impact on 
patient outcomes at the individual level to only improve.

Figure 5: Images in a 47-year-
old woman at screening with 
combination digital mammog-
raphy (DM) and digital breast 
tomosynthesis (DBT). A, DM views 
show no suspicious findings. Left 
DBT views show 7-mm spiculated 
mass in outer breast seen only in, 
B, left craniocaudal (LCC) view 
and not seen in, C, left mediolat-
eral oblique (LMLO) view. The 
artificial intelligence (AI) case 
score of 85% was displayed at 
the bottom of DBT views, with one 
AI outline and lesion score (68 
for spiculated mass) displayed 
on the LCC DBT view and two 
AI outlines and lesion scores (39 
for potential correlate of spicu-
lated mass; 26 for false-positive 
finding) displayed on the LMLO 
DBT view. Readers could click on 
the outlines on any DBT image 
and automatically advance to the 
DBT image where the lesion was 
detected by AI. D,E, Zoomed, D, 
LCC, and, E, LMLO DBT views 
show spiculated mass (dotted 
circle for potential correlate on 
LMLO), which proved to be a 
5-mm invasive ductal carcinoma 
with associated ductal carcinoma 
in situ (estrogen receptor positive, 
progesterone receptor positive, 
human epidermal growth factor 
receptor 2 negative, low Ki67 
level). Ten more readers detected 
the malignant mass with AI, while 
reducing average reading time 
across all 24 readers: Twelve 
(50%) of 24 readers detected the 
mass without AI (reading time, 
110.3 seconds) and 22 (92%) 
readers detected it with AI (read-
ing time, 62.3 seconds).
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c and d shows a group of four readers who without AI have high specificity, low sensitivity, and short reading times. With AI, these 
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(red “X”) with the 260 enriched reader study cases. The AI operating point case-level sensitivity was 91% (59 of 65; 95% confidence 
interval [CI]: 81%, 96%), and its specificity was 41% (79 of 195; 95% CI: 34%, 48%).
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